Cours de maths à partir de 9.90 €/heure
Cours maths 4ème
Addition et soustraction de fractions
Ce cours a pour objectif d’effectuer des additions et des soustractions avec les nombres en écriture fractionnaire. Il permet d’effectuer des calculs simples, ils sont progressifs dans la difficulté. Des situations concrètes sont proposées afin de permettre à l’élève de donner du sens aux calculs qu’il effectue
Quelques rappels sur les fractions
Rappel:
Un nombre en écriture fractionnaire ne change pas quand on multiplie ou quand on divise son numérateur et son dénominateur par un même nombre différent de zéro.
Exemples:
Cela permet de simplifier des fractions.
Cela permet de transformer des écritures fractionnaires.
De manière générale
Si a, b et k désignent des nombres, sachant que b et k sont différents de zéro, alors :
Dans la pratique :
Il est fréquent d’annoncer une proportion sous forme de pourcentage.
« Dans la classe de 3ème A, il y a 19 élèves sur 25 qui sont demi-pensionnaires. »
La proportion de demi-pensionnaires est de 19 sur 25 soit :
On peut écrire :
Autrement dit, il y a 76% d ’élèves demi-pensionnaires dans cette classe.
Réfléchissons
Monsieur Mathenfolie est un grand gourmand !
Dans un premier temps, il mange un quart de pizza.
Dans un deuxième temps, il mange deux quarts de pizza.
Quelle fraction de pizza mange-t-il ?
Monsieur Mathenfolie mange trois quarts d’une pizza.
Remarque:3/4 = 0,75 = 75/100 ; c’est-à-dire que monsieur Mathenfolie mange 75% d’une pizza.
Pour le dessert.
Monsieur Mathenfolie mange un tiers d’une première tablette de chocolat.
Ensuite, il mange trois sixièmes d’une deuxième tablette de même taille que la première.
Quelle fraction de tablette de chocolat mange-t-il ?
Solution : pour pouvoir répondre, il est plus facile de mettre les deux fractions au même dénominateur.
Ainsi:
Conclusion: M. Mathenfolie a mangé cinq sixièmes de tablette de chocolat.
Additionner et soustraire des fractions
Pour calculer la somme ou la différence de deux nombres en écriture fractionnaire :
• Il faut d’abord réduire les deux nombres en écriture fractionnaire au même dénominateur.
• Ensuite, on additionne ou on soustrait les numérateurs et on garde le dénominateur commun.
Exemples:
La propriété utilisée pour mettre au même dénominateur est :
Les simplifications de fractions dans les calculs
Pour simplifier, une méthode est de chercher les multiples des numérateurs et des dénominateurs.
Exemples:
La propriété utilisée est :
Cours complémentaires
Sommaires
Vous avez choisi le créneau suivant :
Nous sommes désolés, mais la plage horaire choisie n'est plus disponible.
Nous vous invitons à choisir un autre créneau.